+41 79 244 09 61  Sandra Sidler-Wüest, Zügholz 5, 6252 Dagmersellen

Beton bereits im Werk als CO2-Fänger

Beton als CO2-Fänger

Beton als CO2-Fänger

Vorbereitung für Begasung: Damit das Kohlendioxid mit Recycling-Granulat reagiert, muss es nach der Anlieferung vom flüssigen in den gasförmigen Zustand gebracht werden. Foto neustark AG. Bild ZVG EMPA

Beton als CO2-Fänger

Beton als CO2-Fänger

Recycling-Granulat-Partikel (Ø etwa 1,5 mm) nach der Karbonatisierung: Hauptprodukte sind CaCO3 (hellgrün) und C-S-H (rosa), das bei der Herstellung von Recyclingbeton mit neu gebildeten Zementphasen reagiert. Bild ZVG EMPA

Zementbaustoffe wie Beton nehmen nach ihrer Herstellung, die viel Kohlendioxid emittiert, das Klimagas wieder auf – ein Prozess, der Jahrzehnte dauert und kaum kontrollierbar ist. Lässt er sich für den Klimaschutz beschleunigen? Empa-Forscher haben in einem aufwändigen Projekt mit zahlreichen Partnern an einer Lösung mitgewirkt, die schon im Betonwerk stattfindet. Erste Resultate sind ermutigend.

Selbst die grössten Sünder können sich bessern: Diese Hoffnung hegt die Fachwelt auch beim «Klimasünder Beton». 6 bis 8 Prozent der menschengemachten CO2-Emissionen weltweit gehen auf das Konto von Zement, dem unerlässlichen Bindemittel für den harten und vielseitigen Baustoff – doch zugleich ist er in der Lage, das Klimagas, das bei der Zementproduktion ausgestossen wurde, nach der Herstellung wieder chemisch zu binden; zumindest teilweise: zwischen 11 und 30 Prozent, je nach Rezeptur und Bedingungen.

«Karbonatisierung» nennt sich dieser Prozess, bei dem aus Calciumhydroxid im Beton mit CO2 Kalkstein entsteht – eine gemächliche Reaktion, die Jahre andauert und deren Tempo von zahlreichen Faktoren abhängt. Seit langem denken Fachleute darüber nach, sie zu nutzen, um die Klimabilanz von Beton zu verbessern – und nun erproben Experten der Empa im Projekt «DemoUpCARMA» mit Partnern unter Federführung der ETH Zürich, ob und wie sich der Prozess in einem realen Betonwerk nutzen und vor allem beschleunigen lässt.

Aufwändige Analysen in den Empa-Labors

Konkret: in einer eigens installierten Anlage der Firma Kästli Bau AG in Rubigen im Kanton Bern – und mit Recyclingmaterial aus rückgebauten Betonkonstruktionen. Das Kohlendioxid, mit dem dieses Material «gefüttert» wird, stammt aus der nahen Kläranlage und wird in verflüssigtem Zustand angeliefert. Im Werk wird es dann in einem speziellen Silo gespeichert, um von dort das Recycling-Granulat mit einem Verfahren der Berner Firma neustark AG kontinuierlich zu «fluten» – also reinem CO2-Gas auszusetzen und die Aufnahme präzise zu messen. Das Expertenteam erforschte die Prozesse, die im Detail bei der CO2-Aufnahme des Recycling-Granulates ablaufen. Zudem wurde untersucht, wie sich so genanntes «Recyclingwasser» aus Wasser, Zement und Sand, das etwa bei der Reinigung von Betonfahrzeugen und Mischanlagen anfällt, nutzen lässt, um Kohlendioxid zu binden.

Beton als CO2-Fänger

Beton als CO2-Fänger

Valentin Gutknecht, Co-CEO von neustark AG, prüft die Leistung des Verdampfers, der das CO2 wieder gasförmig macht. Foto neustark AG. Bild ZVG EMPA

Wie gut und effizient das Recycling-Granulat unter welchen Bedingungen CO2 aufnimmt, haben Andreas Leemann und Frank Winnefeld von der Empa-Abteilung «Concrete & Asphalt» mit zahlreichen Tests erkundet – mit überraschenden Resultaten. Proben des behandelten Materials zeigten unter dem Mikroskop deutliche Veränderungen: Kleinere Partikel hatten an der Oberfläche Flecken aus dunklen und hellen Anteilen, an denen sich der ursprüngliche Zementstein verändert hatte.

Analysen mit dem Rasterelektronen-Mikroskop zeigten, dass die hellen Anteile Calciumcarbonat sind, während die dunklen Phasen hauptsächlich aus Calcium-Silicat-Hydrat – kurz: C-S-H – bestehen, dem Hauptprodukt der Zementhydratation, das Beton seine Festigkeit verleiht. Diesem C-S-H wurde durch die Karbonatisierung ein Teil des Calciums entzogen: Es ist damit kalkärmer und kann wiederum mit neu gebildeten Zementverbindungen im Recyclingbeton reagieren – mit der Folge, dass dessen Druckfestigkeit steigt.

Praxisversuche mit verschiedenen, in der Schweiz häufig verbauten Betontypen bestätigten diese Einsichten. Die Recycling-Produkte mit karbonatisierten Beton-Granulaten erreichten höhere Festigkeiten als Vergleichsbetone mit unbehandeltem Recyclingmaterial. «Eine reaktive Phase also, die neu im Granulat entsteht und im Recyclingbeton eine höhere Festigkeit erzeugt», sagt Leemann, «das hat uns schon überrascht.»

Weiter zeigten die Analysen, dass der Faktor Feuchtigkeit bei der CO2-Anreicherung eine wichtige Rolle spielt: Trockenere Recycling-Mischungen zeigten eine deutlich schnellere Aufnahme des Klimagases als Material, das allzu feucht ist. Und weil die Aussenlagerung von Recycling-Granulaten in der Schweiz eine Trocknung nicht gerade fördert, stellt sich laut den Empa-Fachleuten die Frage, ob dieser Prozess allenfalls technisch optimiert werden sollte.

Deutliche Verbesserung in Reichweite

Die positiven Resultate zeigen, dass das Verfahren Betone auf zweifache Weise klimafreundlicher machen kann. Zum einen durch die Aufnahme von CO2, um die Atmosphäre zu «entlasten»: Sie erreicht bei den neuartigen Baustoffen bis zu 10 Prozent der Emissionen, die bei der Herstellung des Zements für den ursprünglichen Beton in die Atmosphäre gelangten. Zum Zweiten mit der Chance, dank der höheren Festigkeit den Zementgehalt in Recyclingbetonen zu mindern – um 5 bis 7 Prozent. Unter dem Strich liegt das Potenzial der CO2-Einsparung laut den Empa-Experten damit bei gut 15 Prozent.

Und: Die CO2-Behandlung des «Recyclingwassers» zeigte weiteres Potenzial. Proben konnten in Analysen eine beachtliche Menge des Gases binden: etwa 120 Gramm auf ein Kilogramm getrockneten Materials. Der Einsatz dieses Materials führte ebenfalls zu einem, wenn auch geringen, Anstieg der Festigkeit von Betonen, denen sie beigemischt wurde.

Wie weit sich diese Resultate in der Praxis umsetzen lassen, ist freilich noch offen. Zum Beispiel wegen der Frage, wie gut und mit welchem technischen sowie finanziellen Aufwand sich das Verfahren in Betonwerken implementieren lässt. Und wie sich die Karbonatisierung von Recycling-Granulaten auf lange Sicht in unterschiedlichen Betonen auswirkt, also über die gesamte «Einsatzdauer» von mehreren Jahrzehnten.

Grosses Potenzial über gesamte Lebensdauer

Eine erste Einschätzung dazu liefern so genannte «Lebenszyklus-Analysen» von Romain Sacchi und Christian Bauer von der «Technology Assessment Group» am Paul Scherrer Institut (PSI) in Villigen, gemeinsam mit Empa-Fachmann Andreas Leemann. Berücksichtigt man sämtliche Einflüsse auf die CO2-Emission von der Herstellung, Nutzung bis hin zur Entsorgung von «klassischen» Betonen sowie Varianten mit unbehandeltem und mit CO2-angereichertem Recycling-Granulat, so zeigt sich: Das karbonatisierte Material kann den Treibhausgas-Effekt netto um rund 13 Prozent reduzieren – im Vergleich zu Beton mit herkömmlichem Zement und ohne Recyclingmaterial. Bei Beton mit Recyclingmaterial liegt der Effekt noch bei immerhin 9 Prozent; ein beachtliches Potenzial also.

Ehrgeiziges Pilotprojekt mit vielen Akteuren

DemoUpCARMA steht für «Demonstration and Upscaling of CARbon dioxide MAnagement solutions for a net-zero Switzerland». Unter Federführung der ETH Zürich arbeiten Fachleute der Empa, der Eawag, des PSI sowie der Firmen Kästli Bau AG und neustark AG mit 18 weiteren Partnern aus Forschung und Industrie daran, Pfade zur Erzeugung negativer Emissionen aufzuzeigen und zu untersuchen. Neben der Speicherung von CO2 in neuem und recycliertem Beton in der Schweiz zählt dazu auch eine Studie zum Transport und zu permanenter Speicherung von CO2 in einem geologischen Reservoir in Island im Ablegerprojekt «DemoUpStorage». Beide Vorhaben werden vom Bundesamt für Energie (BFE) und vom Bundesamt für Umwelt (BAFU) finanziert und unterstützt

Quelle: Eidg. Materialprüfungs- und Forschungsanstalt EMPA

15.10.2023

Wir bauen weiter aus!

Wir bieten eine interne Ausbildung zum Verkaufsberater/in Aussendienst 100%

(Quereinsteiger & Lehrabgänger willkommen)

Für verschiedene Regionen wie zum Beispiel:

Schaffhausen/Zürich • Rheintal/Liechtenstein • Graubünden • Berner Mittelland • Berner Oberland/Wallis • Fribourg/Seeland • Baselland/Fricktal • Aargau • Zürichsee • Glarnerland

Mehr Informationen und Anmeldung unter https://creativag.ch/jobs/